Een EV is schoner dan een ICE!

English: On Twitter I got into a discussion with Ton Aarts (@ton_aarts) that a EV is always cleaner then a ICE when you calculate the well-to-wheel efficieny. This post is to show him I’m right. Sorry, it’s in Dutch!

Ton Aarts daagde mij op Twitter na een discussie uit over het feit dat mijn Tesla Model S volgens hem niet schoner zou zijn dan een ICE.

Ook zou mijn Tesla Model S een duur speeltje zijn betaald door de Nederlandse belastingbetaler.

Ik heb de Model S gekocht om meerdere redenen:

  • Wil geen ICE meer rijden
  • Rijd 50.000km per jaar, de Model S is de enige die dat kan
  • Het is een ruime en comfortabele auto

De performance versie heb ik niet, ook de 21 inch velgen niet. Wel de 85kWh batterij.

De discussie gaat daar echter niet over, het gaat over het feit dat een EV altijd schoner is dan een ICE. Daarvoor moeten we het well-to-wheel rendement uitrekenen.

Ruwe olie

Voor een ICE begint het bij ruwe olie die we moeten gaan oppompen uit de aarde, tegenwoordig op de meeste rare plekken, zelfs al op de Noordpool!

Ik beschouw mijzelf niet als hippie, maar ik kan het niet langer aanzien dat we puur uit economische belangen zelfs al op de Noordpool aan het boren zijn naar olie.

Deze olie uit de grond krijgen kost energie, veel energie. Ik heb gezocht naar de cijfers, maar die zijn niet te vinden. Wel is het makkelijk om te begrijpen dat het oppompen van de olie en transporteren naar een raffinaderij veel energie kost. Ik ga dat nu echter buiten beschouwing laten omdat ik simpelweg de cijfers niet hard kan maken.

Raffineren

Om van ruwe olie naar benzine danwel diesel te gaan moeten we de olie gaan kraken. Meerdere bronnen vertellen dat er ongeveer 9kWh nodig is om 1 US Gallon (3.7L) aan benzine te verkrijgen uit ruwe olie.

Dat komt er op neer dat je 2,4kWh aan energie nodig hebt om 1 liter benzine te verkrijgen uit ruwe olie.

De bronnen hiervoor zijn: Bron 1, Bron 2, Bron 3.

2,4kWh aan energie

Voordat een ICE ook maar 1 kilometer gereden heeft op de liter brandstof is er al 2400Wh aan energie gebruikt om de brandstof te verkrijgen. Nogmaals, ik laat het hele proces van pompen en transport buiten beschouwing.

Een Model S heeft een gemiddeld verbruik van 200Wh/km. Op die 2400Wh aan energie zou een Model S dus al 12 kilometer kunnen rijden terwijl de ICE nog geen kilometer gereden heeft.

CO2 uitstoot Kolencentrale

Een kolencentrale stoot tussen de 350 en 400 Gram CO2 uit per kWh.

Het raffineren van een liter brandstof kost 2,4kWh, bij 400 Gram CO2 per kWh wordt er dus 960 Gram CO2 uitgestoten om een liter brandstof te raffineren.

Alvorens een ICE een kilometer gereden heeft is er al 960 Gram CO2 uitgestoten! Terwijl op die kWh een Model S al 5km had kunnen rijden en daarbij 80 Gram CO2 had “uitgestoten”.

KM per liter van een ICE

Het wisselt uiteraard per auto, maar een veilige aanname is dat een ICE zo’n 17 kilometer kan rijden op een liter brandstof.<.p>

Als we een Prius als voorbeeld pakken, al is dat geen eerlijke vergelijking met een Model S, komen we anno 2014 uit op een CO2 uitstoot van 135 Gram CO2 per km.

Daarbij moeten we echter nog de 960 Gram CO2 optellen die is uitgestoten bij het raffineren van de olie tot brandstof. Dit was 960 Gram voor 1 liter en daar kan 17 kilometer op worden gereden. Dat is nog eens 56 Gram CO2 extra per kilometer.

In totaal stoot een Prius dus 135 + 56 = 191 Gram CO2 uit per kilometer.

Uitstoot van een Model S

Indien een Model S wordt geladen met electriciteit opgewekt door een kolencentrale ‘stoot’ deze 80 Gram CO2 uit.

Een Prius, een van de schoonste auto’s, stoot well-to-wheel 191 Gram CO2 per kilometer uit.

Verliezen

Het electriciteitsnet kent uiteraard verliezen, zo ook het laden van een Model S. Het transporten van brandstof kent deze echter ook, daarbij ook mee te nemen wat het energie kost om brandstof in de auto te pompen vanuit de tanks bij het tankstation.

Conclusie

Zoals hier boven voor gerekend is er duidelijk te zien dat een Tesla Model S ruim 2x zo schoon is als een Toyota Prius uit 2014.

Daarnaast brengt een EV direct nog een aantal voordelen met zich mee:

  • Geen lokale uitstoot
  • Geen fijnstof van remschijven
  • Minder geluidsoverlast in leefgebieden
  • Mogelijkheid tot lagere uitstoot door schonere opwekking

Het laatste punt is vooral belangrijk: Bij een EV kan je de bron vervangen en direct minder uitstoot realiseren. Een winst van slechts 5% in het rendement van een centrale levert direct 5% minder uitstoot op. Dat is met een ICE simpelweg onmogelijk.

Dus Ton, ik zie de fles wijn graag tegemoet! Mijn adres staat op de contact pagina.

Middelburg to Wales and back

I play paintball as a sport/hobby and this weekend there is a event in Wales which I’m going to attend.

As a Model S owner I obviously wanted to go there with my Tesla Model S, but it’s a 800km single-trip, so I needed to charge somewhere. After some searching I found the Ecotricity network in the UK. A network with 50kW chargers along most of the main Motorways in the UK.

The ecotricity chargers have a 50kW CHAdeMO connector (DC) and a 43kW Type 2 (AC) connector. Since Tesla hasn’t released their CHAdeMO adapter yet I’ll have to charge using the AC connector. The onboard chargers of the Model S are capable of 3x32A (22kW), but they are temporarily limited to 3x26A (18kW). So we could have charged with 50kW instead of 18kW if we had the adapter already.

This morning I left my home in Middelburg and headed to the Calais (France) for the ferry crossing to the UK.

At Calais Port

The first stop was at Calais. No charging facilities there. Thus far we (driving with a friend of mine) had driven 217km with a total usage of 47.3kWh. That comes down to 217Wh/km. It was quite windy and cold (5C) this morning, so that explains the higher usage. We continuesly drove with a speed of 100km/h.

After the ferry to Dover it was time to go to the first charger. The initial idea was to go to a charger along the M20, but over the last few weeks the Ecotricity website said it was online, offline, online, offline. At the moment it’s marked as offline, so we went to a charger along the M2 instead.

From Dover it was just 60km to the charger. We still had 136km of range left, so without any problems we drove to the charger.

Charger at M2

There we are, charging at the Ecotricity charger! Worked just fine. Hit the buttons, swipe the card, choose AC and plug it in!

We are now happily charging at 26A@238V:

charging-m2-screenshot

As you can see, the chargers goes up to 62A, but it’s the Model S which is limited to 26A right now.

The next charging station is underneath a Windmill near Reading. Just 160km from here. So a bit more charging and we are on our way!

Towards the Windmill
After a charge it was time to head to the Green Business Park in Reading for a charge underneath a windmill.

The charging station wasn’t hard to find, simply look for the windmill. There was a Nissean Leaf already charging, but the station has two outlets, so we could plug in and charge.

leaf-and-model-s-windmill

At the windmill there is a nice park with some information signs about the windmill:

Information Windmill Reading

2MW is a huge amount of power, should be enough to give me a full charge 🙂

We stayed here for about 30 minutes. Besides the park there isn’t that much to do at the windmill, so we left towards the next services area to get dinner and a longer charge.

At the next service area we still had 160km or range left.

We’re taking a defensive strategy this trip, we don’t want to run low on power, so we do multiple shorter charges instead of 2 long ones. You never know what happens during the trip!

m4-charger-delamere

The voltage is 247V. So with 3x26A we are looking at a 19.2kW charge! The more kiloWatts that go into the car, the shorter the charge is.

Made it to Wales
A day late I’m writing to be able to tell you I made it to Wales! We charged 73km before our destination to 200km of range so we got at the location with enough charge.

We weren’t sure if we could charge at the Bluestone Park Wales, but they allowed us to plug into a 13A socket which was enough to fully charge the car in 15 hours. We are full again and can begin our trip back to the Netherlands on Monday.

In total we drove 740km with an average of 199Wh/km, so we used 148kWh of energy to get here.

Heading back to Dover
On Sunday evening we left Wales to drive 140km to our first Ecotricity charger to get something to eat and a short charge.

The paintball event was finished around 16:00, so we left Wales around 17:00.

After some “diner” at the Burger King we headed down the M4 for a overnight stay in the Travelodge motel in Chieveley which also has a Ecotricity charger.

We fully charged the car and had a good night of sleep. Got up again at 07:00 and at 08:00 we were on our way again to our last charger before the ferry at Dover.

After this it’s just 280km to our home, so no more need for charging.

Last stretch home
From the last charging station at the M2 it was another 290km to get home. We charged the battery to about 320km before leaving for the ferry.

In Calais it was quite windy, so our energy consumption went up pretty steep. In the end we reached Middelburg with just 17km left in the battery.

Trip log
I kept a full log of the trip and energy consumption which is available here.

In total we used 302kWh for almost 1500km.

The Ecotricity network
One word: Awesome!

I seriously love it that they are solving the chicken-egg problem by simply putting those chargers out there now. The charging is for free right now, but I would have paid if required.

If this network keeps expanding and Tesla delivers the CHAdeMO adapter it will only get better! My next visit to the UK will probably be fully electric again thanks to Ecotricity!

In the end this is what my Model S shows on his charging map:

Charging map Model S UK

10.000 elektrische kilometers! Hoe is de stand?

Tesla Model S 10k km

English version: I have my Tesla Model S for about 3 months now and in that time I’ve driven 10.000 kilometer with it.

This post is to describe how the ride has been and the amount of CO2 emissions I’ve saved.

Short version: A awesome car and I’ve save a lot of CO2!

The rest of this post will be in Dutch.


Inmiddels staan er na bijna 3 maanden al weer 10.000 kilometers op  de teller van mijn Tesla Model S.

Wat kan ik over de auto zeggen? Simpelweg fantastisch! Het 3-fase laden maakt de Model S een zeer goed bruikbare auto voor dagelijks vervoer, eigenlijk gewoon geweldig.

Nog elke keer dat ik in stap ben ik er ontzettend blij mee. Het is gewoon een compleet nieuwe manier van rijden. De 0 naar 100 in slechts 5 seconde blijft geweldig, maar ook de rust tijdens het rijden is prachtig.

Ik kan eindeloos gaan schrijven over hoe blij ik met deze auto ben, hoe veel opbergruimte er in zit, maar ik wil vooral even het puntje uitstoot aan tippen.

Naast de Model S heb ik nog een Toyota Auris Hybride (2011) en de 10.000km die ik elektrisch gereden heb zijn niet gereden met de Toyota.

Wat is nu het verschil geweest?

Het gemiddelde verbruik van mijn Model S over de afgelopen 10.000km is volgens de boordcomputer 230Wh/km, maar ik moet om het verhaal eerlijk te houden ook het verlies tijdens het laden mee nemen. Dat verlies is 15 ~ 20%, maar om de Model S in het nadeel te plaatsen pak ik 20%.

Daarmee kom ik uit op 276Wh per gereden kilometer. Op één kWh uit het stopcontact kan ik dus zo’n 3.62km rijden.

Uiteraard meet ik thuis ook mijn kWh verbruik van de auto, maar ik heb ook publiek geladen en vanuit diverse stopcontacten. Ik moet dus gewoon de kilometerstand vermenigvuldigen met 276Wh per kilometer.

Voor 10.000km had ik dus 2760kWh nodig.

De cijfers wisselen, maar bij de productie (inclusief transport) van een kilowatt-uur in Nederland komt er zo’n 400 gram CO2 vrij. Dit wisselt per aanbieder. Ik heb thuis enkel groene stroom, maar om dan 0 gram CO2 op te schrijven vind ik niet eerlijk.

2762kWh * 400 gram CO2 = 1.104.800 gram CO2

Per gereden kilometer kom ik dus uit op 110 gram CO2 per kilometer met een Model S.

WAUW! DAT IS VEEL! Dat zullen veel mensen nu denken. Maar is dat zo?

Volgens het boekje van mijn Toyota Auris stoot deze 89 gram CO2 per kilometer uit, echter verteld de site werkelijkverbruik.nl dat het in de realiteit 138 gram is.

Het verbruik wat daar staat komt aardig overeen met wat ik met mijn tankpas zie.

Per kilometer is de Model S dus al 20 gram CO2 schoner dan een Toyota Auris Hybride. Een Model S van 2100kg vs een Auris van 1365kg, niet te vergeten dat je eigenlijk een BMW 5-serie moet pakken als goede tegenhanger, maar dat ter zijde.

Om dit verhaal echter eerlijk te houden moeten we ook mee nemen hoe veel CO2 er vrij komt bij de productie van een liter benzine. Die benzine komt immers ook niet zo maar in de tank van de auto.

De daadwerkelijke cijfers zijn behoorlijk lastig te vinden, maar ik heb cijfers van eveneens 400 gram CO2 per liter benzine gehoord.

Op een liter benzine rijd de Auris realistisch gezien 17 kilometer, dan kom je dus uit op 23 gram CO2 extra per kilometer.

De Auris stijgt daarmee van 138 gram naar 161 gram CO2 per kilometer.

De snelle conclusie: Inclusief productie van de kWh’s “stoot” de Model S 110 gram CO2 per kilometer uit en een Toyota Auris Hybride 161 gram CO2.

Auto CO2/km CO2 voor 10.000km
Toyota Auris Hybride 161 gram * 1.610 kg
Tesla Model S 110 gram ** 1.110 kg

* Werkelijke uitstoot en productie benzine
** Uitstoot op basis van energieverbruik en Nederlandse energiemix

Ik ga niet beginnen over dingen als: “Met groene stroom had ik 0 gram CO2 uitgestoten”, want daarmee vind ik dat ik niet serieus over kom. Ookal rijd je dus gewoon op de Nederlandse energiemix dan is een Model S een heel stuk schoner dan een Toyota Auris Hybride. Een auto van een compleet andere klasse.

De Model S is verder ook geen super zuinige elektrische auto. Een Renault ZOE, Nissan Leaf of Tesla Roadster zitten allemaal onder de 200Wh/km en zijn dus een stuk zuiniger.

Elektrisch rijden is dus wel degelijk schoner dan een hybride!